

Государственное бюджетное общеобразовательное учреждение школа №380 Красносельского района Санкт-Петербурга имени А.И. Спирина

Класс-лаборатория «ТехноЛаб» среда становления инженеров и технологов Индустрии 4.0

ДОПОЛНИТЕЛЬНАЯ ПРОФЕССИОНАЛЬНАЯ ПРОГРАММА

«РЕАЛИЗАЦИЯ ИДЕЙ ИНЖЕНЕРНО-ТЕХНОЛОГИЧЕСКОГО ОБРАЗОВАНИЯ В ОБЩЕОБРАЗОВАТЕЛЬНОМ УЧРЕЖДЕНИИ»

Санкт-Петербург, 2020

ХАРАКТЕРИСТИКА ПРОГРАММЫ

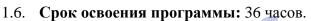
1.1. Цель реализации программы

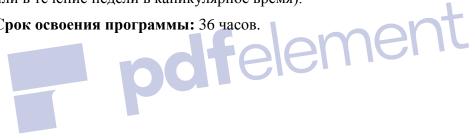
Дополнительная профессиональная программа «Реализация идей инженернотехнологического образования в общеобразовательном учреждении» направлена на развитие у педагогических работников компетенций, обеспечивающих организацию работы с одарёнными, способными или заинтересованными в области научнотехнической направленности детьми.

Цель реализации программы — осмысление обучающимися (слушателями) механизмов организации инженерно-технологического образования в условиях общеобразовательного учреждения, знакомство с особенностями работы и ресурсными возможностями высокотехнологичного оборудования и робототехнических конструкторов, освоение педагогического инструментария по развитию инженерного мышления и формированию навыков инженерной деятельности у школьников.

1.2. Планируемые результаты обучения

Виды деятельности	Профессиональные компетенции или трудовые функции	Практический опыт	Умения	Знания
Развитие познавательной активности, самостоятельности, инициативы, творческих способностей, формирование гражданской позиции, способности к труду и жизни в условиях современного мира. ¹	Организация деятельности обучающихся, направленной на развитие инженерного мышления. Формирование у обучающихся навыков и умений инженерной деятельности (моделирование, конструирование, проектирование).	Разработка проектов, направленных на развитие инженерного мышления обучающихся с использованием высокотехнологи чного оборудования и робототехническ их конструкторов.	Определять содержание, объем и место учебного материала, способствующего развитию инженерного мышления и формированию умений инженерной деятельности. Подбирать ресурсы для реализации различных форм деятельности обучающихся, способствующих развитию инженерного мышления. Разрабатывать учебный проект, направленный на развитие инженерного мышления, с	Нормативные документы, регулирующие образовательную деятельность по развитию инженерного мышления. Основные принципы и методические особенности развития инженерного мышления и формирование у обучающихся навыков и умений инженерной деятельности. Характеристики, особенности и ресурсные возможности применения высокотехнологично го оборудования


¹ Профессиональный стандарт "Педагог (педагогическая деятельность в сфере дошкольного, начального общего, основного общего, среднего общего образования) (воспитатель, учитель)" (Приказ Министерства труда и социальной защиты РФ от 18 октября 2013 г. N 544н с изменениями и дополнениями от 25 декабря 2014 г., 5 августа 2016 г.)


-

	использованием высокотехнологично го оборудования и робототехнических конструкторов. Осуществлять преобразующую деятельность с использованием высокотехнологично го оборудования и робототехнических конструкторов.	(3D- принтер, лазерный станок, Arduino), робототехнических конструкторов в образовательном процессе.
--	---	--

Общепрофессиональные компетенции (ОПК) и (или) общие компетенции (ОК) или универсальные компетенции (УК): способность осуществлять образовательную деятельность и развивающую деятельность с обучающимися, имеющими способности и интерес к областям научно-технической направленности.

- 1.3. Категория слушателей: учителя, педагоги дополнительного образования детей.
- 1.4. Форма обучения: очная.
- 1.5. Режим занятий: 6 занятий по 6 часов (1 раз в неделю в течение 1,5 месяца или в течение недели в каникулярное время).

2. СОДЕРЖАНИЕ ПРОГРАММЫ

2.1. Учебный план

	,,		1		1
			в том числе		
№ п/п	Наименование раздела, дисциплин (модулей)	Всего часов	лекции	практи- ческие занятия, семинары	Промежуточная аттестация
1.	Механизмы организации	6	5	1	Выполнение
	инженерно-технологического образования в условиях				практических заданий
	общеобразовательного учреждения				
1.1.	Развитие инженерного мышления у обучающихся как приоритетная	1	1		
	задача школы				
1.2.	Теоретические основы развития	3	3		
	инженерного мышления и				
	формирования навыков инженерной				
	деятельности у обучающихся				
1.3.	Модели организации инженерно-	2	1	1	
	технологического образования				
2.	Педагогический инструментарий	28	11	17	Выполнение
	по развитию инженерного			- 4	практических
	мышления и формированию —		100		заданий
	навыков инженерной деятельности	DIE	21 I I		по подготовке
	у школьников				проекта.
2.1.	Образовательная среда для развития	3	2	1	
	инженерного мышления и				Выполнение и
	формирования навыков инженерной				защита проекта.
	деятельности у обучающихся				
	(на примере «Класса-лаборатории «ТехноЛаб»)				
2.2.	Особенности программирования	3	1	2	
	в САПР Autodesk Inventor				
2.3.	Особенности использования лазерного	3	1	2	
	станка в образовательном процессе				
2.4.	Особенности использования	3	1	2	
	3D принтера в образовательном				
	процессе				
2.5.	Особенности использования	3	1	2	
	робототехники и радиоэлектроники				
	в образовательном процессе				
2.6.	Особенности использования	3	1	2	
	визуальных сред программирования				
	в образовательном процессе	4.5		_	
2.7.	Организация проектной деятельности	10	4	6	
	обучающихся с использованием				
	оборудования класса-лаборатории				
2	«ТехноЛаб»	2		2	
3.	Итоговая аттестация	2	1.0	200	Зачет
	Итого:	36	16	20	

2.2. Рабочая программа

курса «Реализация идей инженерно-технологического образования в общеобразовательном учреждении»

Раздел 1. Механизмы организации инженерно-технологического образования в условиях общеобразовательного учреждения

Тема 1.1. Развитие инженерного мышления у обучающихся как приоритетная задача школы $(1 \ \text{час})$

Стратегия развития инженерного образования в России (государственные, региональные проекты, направленные на развитие инженерного образования). Сущность, содержание, характер и значение инженерной деятельности в современных условиях. Новая образовательная среда: НТИ, инновационные центры, кванториумы, технопарки, образовательные пространства с высокотехнологичным оборудованием в общеобразовательных учреждениях. Механизмы организации инженернотехнологического образования «Класса-лаборатории «ТехноЛаб».

Тема 1.2. Теоретические основы развития инженерного мышления и формирования навыков инженерной деятельности у обучающихся (3 часа)

Инженерное мышление. Основные понятия. Особенности инженерного мышления. Формы, методы и средства развития инженерного мышления обучающихся. Использование метода проектов, информационных технологий, технологии проблемного обучения для развития инженерного мышления обучающихся в урочное и внеурочное время.

Тема 1.3. Модели организации инженерно-технологического образования (2 часа)

Инженерно-технологическое образование: назначение и целевые ориентиры. Модели организации инженерно-технологического образования в общеобразовательном учреждении. Модель функционирования «Класса-лаборатории «ТехноЛаб».

Практические и семинарские занятия:

1.1. Семинарское занятие «Модели организации инженерно-технологического образования в общеобразовательном учреждении».

Раздел 2. Педагогический инструментарий по развитию инженерного мышления и формированию навыков инженерной деятельности у школьников

Тема 2.1. Образовательная среда для развития инженерного мышления и формирования навыков инженерной деятельности у обучающихся (на примере «Класса-лаборатории «ТехноЛаб») (3 часа)

Образовательная типология. Новая среда: понятие, структура, высокотехнологичная образовательная среда: характеристика, особенности, доступность. образовательной Компоненты среды для развития инженерного мышления формирования навыков инженерной деятельности у обучающихся. Высокотехнологичная образовательная среда в школах (на примере «Класса-лаборатории «ТехноЛаб»).

Tema 2.2. Особенности программирования в САПР Autodesk Inventor (3 часа)

Основы автоматизированного проектирования. (Введение в компьютерную графику.) Знакомство с интерфейсом программы Autodesk Inventor, создание эскизов и основные операции с ними. Выделение скрытых объектов. Выделение всех объектов. Инструменты для преобразований. Компактная панель и типы инструментальных кнопок. Создание пользовательских панелей инструментов. Простейшие построения. Сдвиг и поворот, масштабирование и симметрия, копирование и деформация объектов, удаление участков. Выделение скрытых объектов. Выделение всех объектов. Инструменты для преобразований.

Тема 2.3. Особенности использования лазерного станка в образовательном процессе (3 часа)

Лазерные технологии и их применение в различных областях экономики. Устройство станка лазерной резки, преимущества и целесообразность их использования на производствах. Методика использования лазерного станка на учебных занятиях, во внеурочной деятельности, на занятиях ОДОД, а также в проектной деятельности. Особенности организации деятельности учащихся с использованием станка лазерной резки.

Тема 2.4. Особенности использования 3D принтера в образовательном процессе (3 часа)

Состав и назначение оборудования для 3D прототипирования и моделирования. Содержание и особенности твердотельного моделирования. 3D-печать и ее виды. Знакомство с понятиями: «твердотельное моделирование», «быстрое прототипирование», «геометрическое моделирование». Методика использования 3D-прототипирования и моделирования на учебных занятиях, во внеурочной деятельности, на занятиях ОДОД, а также в проектной деятельности. Особенности организации деятельности учащихся с использованием 3D прототипирования и моделирования.

Тема 2.5. Особенности использования робототехники и радиоэлектроники в образовательном процессе (3 часа)

Роль и место робототехники в жизни современного общества. Основные сведения из истории развития робототехники в России и мире. Основные понятия робототехники, основные технические термины, связанные с процессами конструирования и программирования роботов, общее устройство и принципы действия роботов, характеристики основных классов роботов. Основные законы электрических цепей, правила безопасности при работе с электрическими цепями, основные радиоэлектронные компоненты.

Методика использования робототехники и радиоэлектроники на учебных занятиях, занятиях ОДОД, во внеурочной и проектной деятельности. Особенности организации деятельности обучающихся на занятиях по робототехнике и радиоэлектронике. (1 час)

Тема 2.6. Особенности использования визуальных сред программирования в образовательном процессе (3 часа)

Новейшие направления в области создания технологий программирования. Программирование в средах современных информационных систем. Основы визуального программирования. Назначение и возможности системы визуального программирования. Типы данных. Операции. Выражения. Операторы управления обработки данных. Подпрограммы. Возможности функций. Методика использования визуальных сред программирования на учебных занятиях, во внеурочной деятельности, на занятиях ОДОД, а также в проектной деятельности.

Тема 2.7. Организация проектной деятельности обучающихся с использованием оборудования «Класса-лаборатории «ТехноЛаб» (10 часов)

Теоретические основы организации проектной деятельности обучающихся. Современные подходы к организации проектной деятельности. Цели организации проектной деятельности учащихся. Этапы работы над проектом.

Роль проектной деятельности в развитии инженерного мышления и формировании у обучающихся навыков и умений инженерной деятельности (моделирования, конструирования, проектирования). Обзор успешных проектов обучающихся, выполненных в «Классе-лаборатории «ТехноЛаб».

Технологическая карта проекта. Методический паспорт проекта.

Практические и семинарские занятия:

- 2.1. Семинарское занятие «Компоненты образовательной среды для развития инженерного мышления и формирования навыков инженерной деятельности у обучающихся».
- 2.2. Практическое занятие «Создание модели в САПР Autodesk Inventor».
- 2.3. Практическое занятие «Создание модели в САПР Autodesk Inventor и изготовление изделия на лазерном станке».
- 2.4. Практическое занятие «Создание модели в САПР Autodesk Inventor и изготовление изделия на 3D-принтере».
- 2.5. Практическое занятие «Сборка электрических схем на беспаечных макетных платах. Программирование с применением Arduino».
- 2.6. Практическое занятие «Создание программы с помощью визуальной среды программирования».
- 2.7. Практическое занятие «Создание проекта в образовательном пространстве «Классалаборатории «ТехноЛаб».

3. ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ

3.1. Материально-технические условия реализации программы

Для организации образовательного процесса предусмотрено использование нового образовательного пространства — «Класса-лаборатории «ТехноЛаб». Данное пространство предоставляет возможность проводить как лекционные, семинарские занятия, так и реализовывать в полном объеме практическую часть программы.

Для организации теоретических занятий необходимы рабочие столы с широкоформатными компьютерами и выходом в интернет, интерактивная доска и мультимедийный проектор.

Для организации практических занятий необходимо следующее оборудование:

- 3D Принтер mz3D-360 (печатать любыми доступными на рынке материалами, высочайшее качество печати, надежность и простота конструкции);
- 3D Принтер ZENIT DUO (два экструдера, что позволяет печатать одновременно двумя типами или двумя цветами пластика);
- Лазерный станок ZERDER FLEX (возможность работать с разными видами материала дерево, пластик, пенопласт и др., большая площадь рабочей поверхности);
- Станок сверлильный Proxxon (от 0,5 мм до 3,5 мм, 3 различных скорости вращения шпинделя);
- Станок сверлильный Einhell (сверление отверстий диаметром до 16 мм, поддержка максимальной частоты вращения до 2450 оборотов в минуту).
- Рабочая зона Arduino;
- Базовый набор LEGO MINDSTORMS Education EV3 и ресурсный набор LEGO MINDSTORMS Education EV3.

Оборудование «Класса-лаборатории «ТехноЛаб» соответствует санитарногигиеническим требованиям САНПИН. Оно изготовлено из экологически безопасных материалов, поддающихся незатруднительной уборке, пожаробезопасное, отвечает нормативам охраны труда.

3.2. Учебно-методическое обеспечение программы

Программа повышения квалификации реализуется с использованием учебнометодического обеспечения образовательного пространства «Класса-лаборатории «Технолаб», разработанного инновационной командой школы № 380 Красносельского района Санкт-Петербурга.

Особенностью реализации данной программы является создание организационно**условий**. обеспечивающих формирование и совершенствование профессиональных компетентностей педагогов, работающих над развитием у школьников инженерного мышления, посредством включения их в практику учреждения – носителя актуального опыта. Данная форма создает условия для проектирования на основе изученного инновационного опыта собственных вариативных моделей профессиональной деятельности, адаптированных к условиям конкретного образовательного учреждения.

Деятельность осуществляется в очной форме. Теоретический материал излагается с помощью проблемных лекций, практическая часть занятий проводится с использованием современного технического оборудования «Класса-лаборатории «Технолаб», а также помощью активных форм обучения (практикумов, деловых игр).

3.3. Информационное обеспечение программы

а) основная литература:

1. Аймалетдинов Т.А. Дети и технологии. - Москва: НАФИ, 2018.

- 2. Боровкова Т.И. Подходы к разработке модели компетенций тьютора М.: Инфра М., 2015.
- 3. Винницкий Ю.А, Григорьев А.Т.: Scratch и Arduino для юных программистов и конструкторов. СПб: БХВ-Петербург, 2018.
- 4. Гайсина С.В., Огановская Е.Ю., Князева И.В. Робототехника, 3D-моделирование и прототипирование в дополнительном образовании. СПб.: KAPO, 2017.- 208с.
- 5. Даутова О.Б., Иваньшина Е.В., Ивашедкина О.А. Современные педагогические технологии основной школы в условиях ФГОС. СПб.: КАРО, 2015.
- 6. Даутова О.Б. Образовательная коммуникация: традиционные и инновационные технологии. СПб.: КАРО, 2018.
- 7. Козловская С.Н. Технологии организации профориентационной работы в школе. М.: ИНФРА-М, 2017.
- 8. Левитес Д.Г. Педагогические технологии. М.: ИНФРА-М, 2018.
- 9. Огановская Е.Ю., Гайсина С.В., Князева И.В. Робототехника, 3D-моделирование и прототипирование на уроках и во внеурочной деятельности. СПб.: КАРО, 2017.-256с.

б) дополнительная литература:

- 1. Двенадцать решений для нового образования. Доклад Центра стратегических разработок и Высшей школы экономики. Москва, апрель 2018 [Электронный ресурс] Режим доступа: https://www.hse.ru/data/2018/04/06/1164671180/Doklad obrazovanie Web.pdf
- 2. Концепция преподавания предметной области «Технология» в образовательных организациях Российской Федерации, реализующих основные общеобразовательные программы [Электронный ресурс] Режим доступа: https://docs.edu.gov.ru/document/c4d7feb359d9563f114aea8106c9a2aa
- 3. Профессиональный стандарт «Педагог (педагогическая деятельность в сфере дошкольного, начального общего, основного общего, среднего общего образования) (воспитатель, учитель)» [Электронный ресурс] Режим доступа: http://fgosvo.ru/uploadfiles/profstandart/01.001.pdf
- 4. Федеральный государственный образовательный стандарт основного общего образования (Проект) [Электронный ресурс] Режим доступа: https://www.garant.ru/products/ipo/prime/doc/56619643/

в) другие информационные ресурсы:

- 1. XX Всероссийская олимпиада школьников по технологии. Методические рекомендации по проведению школьного и муниципального этапов [Электронный ресурс] Режим доступа: http://uchutrudu.ru/wp-content/uploads/2018/09/teh-sm-2019.pdf
- 2. Акмеограмма как инструмент развития современных ролевых позиций педагога [Электронный ресурс] Режим доступа: http://elar.uspu.ru/bitstream/uspu/4364/1/povr-2016-03-01.pdf
- 3. Вебинар «Методика подготовки школьников к Всероссийской олимпиаде по технологии» [Электронный ресурс] Режим доступа: https://youtu.be/yuDch7AkHFk
- 4. Инструкция по работе с платой ArduinoUNO [Электронный ресурс]. URL: http://www.unilib.neva.ru/rus/lib/ (дата обращения: 03.04.2020).
- 5. Использование кейс-метода на уроках технологии в соответствии с ФГОС ООО [Электронный ресурс] Режим доступа: https://docplayer.ru/39711178-Ispolzovanie-keys-metoda -na-urokah-tehnologii-v-sootvetstvii-s-fgos-ooo.html
- 6. Исследовательская деятельность на уроках технологии [Электронный ресурс] Режим доступа: https://multiurok.ru/files/issliedovatiel-skaia-dieiatiel-nost-na-urokakhtie.html

- 7. Кружковое движение НТИ –[Электронный ресурс] Режим доступа: http://www.nti2035.ru/talents/circles
- 8. Национальная стратегическая инициатива. Россия-2035. Технологии [Электронный ресурс] Режим доступа: https://www.youtube.com/watch?v=Yz2zIP8gylE
- 9. HOBATOP [Сайт]. URL: https://novator.team/group/19/stream/1 (дата обращения: 03.04.2020).
- 10. Основы тьюторского сопровождения [Электронный ресурс] Режим доступа: http://www.eduportal44.ru/pavino/ledengsk/DocLib5/Тьюторское%20сопровождение%20 0учащихся/Основы%20тьюторского%20сопровождения%20лекции%201-4.pdf
- 11. Приемы развития критического мышления [Электронный ресурс] Режим доступа: https://multiurok.ru/files/priiemy-razvitiia-kritichieskogo-myshlieniia.html

3.4. Кадровые условия реализации программы

К реализации программы привлекаются учителя, педагоги дополнительного образования или методисты, компетентные в вопросах развития инженерного мышления и формирования навыков инженерной деятельности у обучающихся общеобразовательных учреждений.

4. ОЦЕНКА КАЧЕСТВА ОСВОЕНИЯ ПРОГРАММЫ

4.1. Промежуточная аттестация:

Текущий контроль осуществляется в ходе выполнения и проверки заданий, демонстрирующих владение слушателями теоретическими знаниями и практическими умениями, заявленными в качестве результатов освоения программы.

На практических занятиях создаются учебные ситуации для выполнения заданий аналитического или практического характера в малых группах или в парах. Практические задания предполагают активное включение всех слушателей в учебный диалог и направлены на проверку усвоения слушателями новых знаний и способов деятельности.

Оценка успешности выполнения практических заданий осуществляется в ходе презентации образовательных продуктов, выполненных обучающимися (слушателями).

Промежуточный контроль включает также оценку активности участия слушателей в разнообразных формах проведения практических занятий (ответы на вопросы, обмен опытом, выполнение практических заданий, рефлексия).

Итоговая аттестация слушателей осуществляется в форме зачёта, для которого необходимо выполнить проектную работу с использованием высокотехнологичного оборудования «Класса-лаборатории «ТехноЛаб». Работа состоит из практической части (самого продукта, созданного на оборудовании «Класса-лаборатории «ТехноЛаб» и письменной, отражающей замысел учебного проекта (методический паспорт и сценария реализации учебного проекта). Тему учебного проекта слушатели выбирают самостоятельно.

Итоговая работа может выполняться индивидуально или в малых группах.

Объект оценивания — сформированные профессиональные компетенции; предмет оценивания — приобретённые знания и умения слушателей по вопросам использования современных методов и технологий обучения, направленных на формирование инженерного мышления и навыков инженерной деятельности обучающихся.

Письменная часть работы должна содержать:

- методический паспорт учебного проекта;
- сценарий реализации учебного проекта;
- рефлексивные заметки автора об особенностях организации проектной деятельности обучающихся.

При оформлении образовательного продукта необходимо указать тему и автора. В конце работы при необходимости указывается список используемых источников. Работа оформляется в текстовом редакторе, объём должен составлять не более 10 страниц текста (шрифт Times New Roman, размер 12 пт, межстрочный интервал – 1).

Оценка успешности разработки образовательного продукта осуществляется на основе следующих критериев и показателей (таблица).

Критерий	Показатели		
Методическая грамотность	 обоснованность места и роли учебного проекта в развитии инженерно-технологического мышления обучающихся; направленность на достижение учащимися новых образовательных результатов в инженерно-технологическом направлении; обоснованность ресурсной обеспеченности проекта; продуманность этапов проектной деятельности 		
Технологичность замысла	 продуманность этапов проектной деятельности. связь темы учебного проекта с целями и задачами по развитию инженерно-технологического мышления обучающихся; продуманность сценария создания проблемной ситуации; реальность календарного плана реализации проекта; обоснованность критериев и параметров оценки результатов проекта; целесообразность подбора приёмов работы с информационными ресурсами; целесообразность определения стратегии проведения исследования и реализации практической части проекта; целесообразность способов представления результатов проектной деятельности; целесообразность способов организации рефлексии процессов и результатов проектной деятельности 		
Оригинальность замысла	оригинальность авторского замысла проекта;творческая презентация проекта коллегам		

По каждому из показателей выставляется оценка от 0 до 3 баллов. Образовательный продукт считается выполненным, если слушатель получил от 30 до 45 баллов.

Практическая часть работы представлена в виде конкретного продукта, созданного на одном из видов оборудования «Класса-лаборатории «ТехноЛаб»». Основными критериями являются практическая значимость, новизна и соответствие замысла автора и продукта проекта.

Итоговая аттестация по программе осуществляется в виде зачета. На зачет слушатель должен представить итоговую работу – проект, а также презентовать его в течение 5 минут, принять участие в обсуждении представленных проектов. Проект содержит пояснительную записку, по структуре и содержанию отражающую описание проектной или инженерно-технической деятельности, направленной на развитие инженерного мышления обучающихся.

Критерии оценки:

Шкала	Критерии				
	Слушатель выполнил работу в полном объеме; проявил понимание				
	изученных проблем и вопросов; предложил творческие решения				
«зачтено»	использования в своей профессиональной деятельности знаний, умений				
	и опыта, приобретенных в ходе освоения программы; сделал				
	аргументированные выводы.				
	Слушатель выполнил работу не полностью или не проявил понимание				
	изученных проблем и вопросов; не предложил творческие решения				
«не зачтено»	использования в своей профессиональной деятельности знаний, умений				
	и опыта, приобретенных в ходе освоения программы; не сделал				
	аргументированные выводы.				

